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Abstract. A four-state pseudospin model is constructed for the isomorphous phase transition hcp-2→hcp-1
in pure C70 and in C70-rich mixed crystal C70(1−x)C60x. With the specific anisotropic pseudospin inter-
actions adapted to the C70 crystal the model is equivalent to a two-state Ising model in a temperature-
dependent field. Replica symmetric state of the model is shown to approach the critical point when the
width of distribution of random fields and/or of random bonds increases. The temperature of the phase
transition and the phase equilibrium temperature then are practically constant, whereas the experiment
shows their strong decrease with x. The main effect of dilution resides in an x-dependence of the model pa-
rameters. Dilatometric data on the hexagonal C70(1−x)C60x are used to fit these parameters. A metastable
disordered phase subsisting below the phase transition is discovered in a range of the model parameters
and is shown to be responsible for the macroscopic behaviour of the system. A good agreement with
experimental data is obtained for the spontaneous strain and for the x-dependence of the hysteresis.

PACS. 61.48.+c Fullerenes and fullerene-related materials – 64.60.Cn Order-disorder transformations;
statistical mechanics of model systems – 64.60.My Metastable phases – 64.70.Pf Glass transitions

1 Introduction

The high-temperature solid phases of the pure fullerene
C70 are orientationally disordered and show one of the
close packed structures: fcc (cubic, Fm3m) or hcp (hexago-
nal, P63/mmc) [1]. Both structures have been observed de-
pending on the preparation procedures [2,3]. The samples
grown from solution crystallize preferentially in the hexag-
onal structure hcp (P63/mmc) [4,5]. The orientational dis-
tribution of the C70 molecules is practically spherical in
the high-temperature phase hcp-2. At about 337 K the
crystal C70 undergoes a discontinuous phase transition in
which the long molecular axes become ordered along the
crystallographic direction (0001). The space group of the
crystal does not change at this phase transition, whilst
the ratio of the lattice constants c/a jumps abruptly from
the value characteristic to spherical effective molecules:
c/a = 1.63... (hcp-2 phase) to the value corresponding
to the shape of a single C70 molecule c/a = 1.84 (hcp-1
phase) [4]. Thus, the phase transition hcp-2→hcp-1 falls
into the category of isomorphous phase transitions [6]. For
symmetrical reasons, such phase transitions are either of
first order or there is no transition at all, both situations
being separated by a critical point [7].
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It was found [8] that an admixture of more spheri-
cal and smaller molecules of C60 in the sample of hcp-2
phase of C70 strongly lowers the temperature of the phase
transition and causes a peculiar behaviour to the jump of
the spontaneous strain at the phase transition: the jump
initially increases and then decreases with increasing con-
centration x of the C60 in the system C70(1−x)C60x. At the
concentration x ≈ 0.08 the first order phase transition dis-
appears completely. This resembles the typical behaviour
related with a critical point. On the other hand, the dilu-
tion of the quadrupolar molecules C70 with the spherical
molecules C60 introduces a distribution of random fields
and of random bonds. Such a dilution then should logically
lead to freezing of the orientational disorder in analogy to
the well studied mixed systems KCN(1−x)Brx [9,10]. In
the present work we address the question of the interplay
between the critical point and the freezing of the disorder
on the basis of the dilatometric data of reference [8].

The existing theoretical treatments of the orientational
glasses mainly exploit analogies with diluted magnets [11],
which undergo symmetry-breaking phase transitions usu-
ally of second order [12]. Much less known is the influ-
ence of random fields and random bonds on strongly first-
order phase transitions. Reference [13] presents general
considerations on the impurity-induced rounding of the
symmetry-breaking phase transition of first order with-
out, however, studying particular models of interactions.
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Potts models, which exhibit discontinuous phase transi-
tions for sufficiently high number of states, have been
shown to turn to continuous phase transition at strong
enough random fields [14]. This behaviour resembles the
tricritical point [6] occurring in symmetry-breaking sys-
tems. Nothing at all, to our knowledge, has been pub-
lished on the effects of random admixtures in the case of
first-order isomoprhous phase transitions. This actuated
us to use the available experimental data on the system
C70(1−x)C60x and to treat them with the simplest possible
model. The model is based on the idea of Pirc et al. [10].

In Section 2 we define the order parameters relevant
in the isomorphous phase transition hcp-2→hcp-1 of pure
C70 and of the mixed crystal C70(1−x)C60x. Because the
order parameters are fully symmetrical the corresponding
free energy contains new terms in comparison with the free
energy of the fcc→R3̄m phase transition in the same ma-
terial [15]. The form of the free energy given in Section 2
is independent of microscopic interactions. We show that
the usual assumptions of Landau theory do not provide
simple indications on the x-dependence of the free energy
coefficients.

A strongly anisotropic pseudospin model presented
in Section 3 and treated in the mean field approxima-
tion allows one to obtain the free energy adapted to
the geometry and to the interactions in the hexago-
nal C70(1−x)C60x. Since our model markedly differs from
isotropic models used in the existing theoretical analyses
of quadrupolar disordered systems [10,12] we describe it
in some detail. We show that when subject to random
fields and random bonds the model approaches the criti-
cal point, without, however, a significant variation of the
phase transition temperature. Thus, a phenomenological
x-dependence must be introduced to comply with the very
strong decrease in the transition temperature with increas-
ing x observed in experiment [8]. The most important
property of the model is that a free energy minimum de-
scribing the disordered phase can subsist to very low tem-
peratures even without substitutional disorder. This corre-
sponds to a metastable disordered phase detected in quite
a number of materials (see Ref. [16] for examples). Our fits
to the dilatometric data for C70(1−x)C60x indicate how the
dilution enhances formation of this low-temperature dis-
ordered phase. Kinetic reasons for possible discrepancies
between the present model and experimental observations
are discussed in Section 4.

2 Order parameters and Landau free energy
for the isomorphous phase transition
hcp→hcp in C70(1�x)C60x

2.1 Order parameters

The orientational order parameter in the phase transition
hcp-2→hcp-1 of C70 is the average of the second-order
Legendre polynomial

η = 〈P2 (cos(ϑ))〉 =
〈

1
2

[
3 (cos(ϑ))2 − 1

]〉
, (1)

where ϑ is the angle between the long molecular axis and
the crystallographic direction (0001). The order parame-
ter η is close to zero in the disordered phase hcp-2 and
amounts to one in the completely ordered phase hcp-1.

Since the volume change at the phase transition is
rather weak [17] the relevant elastic order parameter is a
traceless strain corresponding to the variation of the c/a
ratio mentioned in the Introduction

ε11 = ε22 = −
√

2/3ε/2, ε33 =
√

2/3ε, (2)

with ε = 0.0810807× √
3/2 = 0.099301... Here the strain

is expressed in a rectangular coordinate system with the
z axis parallel to the direction (0001). The second order
elastic constant c0 corresponding to the strain (Eq. (2))
reads

c0 = (2/3)(c11/2 + c12/2 − 2c13 + c33). (3)

The strain of equation (2) and the elastic constant of equa-
tion (3) are, in fact, a normal strain and an eigenvalue of
the elastic constant matrix respectively, only in the case
of an isotropic medium, where c33 = c11, c12 = c13 and
c0 = (c11 − c12). The normal strains and the elastic con-
stants for general medium are given in Appendix A. Away
from the critical point the full softening of elastic con-
stants is not to be expected so that equations (2, 3) are a
good approximations.

2.2 Free energy expansion

The most general, invariant expansion of the free energy
in terms of the fully symmetrical order parameters η and
ε contains the terms of all possible orders. When limited
to the order 4 in η and to the order 2 in ε the free energy
reads

F (η, ε; T ) = − Eη +
1
2
A (T − Tc) η2 +

1
3
Bη3

+
1
4
Cη4 +

1
2
c0ε

2 − rηε + Kε. (4)

The quantity E is formally equivalent to an external field
tending to align the long molecular axes parallel to (0001)
direction. It is present in the expansion even in the ab-
sence of any external field due to the full symmetry of the
order parameter. Similarly, the coefficient K is formally
equivalent to an external stress and gives rise to a con-
tinuous variation of the deformation ε with temperature.
Such a variation has been really observed in systems of
the hcp symmetry [18]. The presence of the terms E and
K together with the third-order term proportional to B,
implies a possibility of a first-order phase transition or
no transition et al. [7]. The boundary point of both situ-
ations corresponds to an isolated critical point at which
the phase transition disappears. This is the only possible
case of a second-order phase transition occurring with-
out a change of symmetry. Solution of non-linear equa-
tions for minima of the free energy (4) [19] shows that
the phase transition disappears when the coefficient E
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is big enough. In the present case it would mean that
an increase in the concentration x of the non-quadrupole
molecules C60 should strengthen the field E. The ex-
pected effect of dilution is of course opposite: the dilution
should impede the molecules’ ordering. Thus, the simple
Landau theory with x-dependent coefficients does not pro-
vide a plausible description of the disappearance of the
phase transition in the mixed system C70(1−x)C60x. The
reason for that lies in the very schematic temperature-
dependence only included in the term ∼A(T −Tc)η2. The
pseudospin model of the next section implies a rather spe-
cific temperature-dependence of the free energy and re-
moves this inconsistency.

3 Pseudospin model for hexagonal
C70(1�x)C60x

The first step in the construction of a pseudospin model is
to define a discrete set of orientational states the molecule
can visit in the disordered phase. The states should cor-
respond to minima of an effective one-particle potential.
To model this potential we considered the elongated C70

molecule averaged over the rotations about its long molec-
ular axis. The neighbouring molecules were replaced by
effective spheres resulting from the orientational disorder.
In Section 3.1 we show that the use of purely steric in-
teractions does not reproduce the orientational distribu-
tion experimentally observed in the fcc phase of C70. The
correct predictions are obtained by addition of a charge
distribution following from the electronic structure of the
molecule. Application of the same interactions to the hcp
structure produces a one-particle potential with four min-
ima, one of them in the direction (0001) as required in
the hcp-1 phase. In Section 3.2 we construct symmetry-
adapted combinations of the occupation numbers of the
states defined. The pseudospin interactions then are sim-
plified (Sects. 3.3 and 3.4) in such a way that the mean
field arises only when the molecules form close packed
planes with the long molecular axes perpendicular to the
planes. This is the only arrangement observed in C70. Us-
ing the replica symmetric state we show in Section 3.5
that the effect of random fields or/and of random bonds
is a narrowing of the hysteresis, i.e. a rounding of the first
order phase transition without variation of the phase equi-
librium temperature. Section 3.6 presents fits of the model
parameters to the dilatometric data of reference [8].

3.1 One-particle orientational potential and definition
of the pseudospin states

Each site in the hcp structure has twelve nearest neigh-
bours, which form 6 octahedral and 8 tetrahedral spaces
(Fig. 1). To study the simplest single-particle orientational
potential of the C70 molecule in the hcp-2 phase we have
replaced all the nearest neighbours by effective spheri-
cal distributions. The potential of interaction between the
central molecule and each effective sphere then was chosen

ϑ

(1000)

4

3

2

1

(0001)

Fig. 1. Nearest neighbours of a node in hcp structure. Square
faces of the coordination polyhedron are sections of octahedral
spaces and triangle faces are sections of tetrahedral spaces.
Dotted lines show the orientations of long molecular axis in
states 1O, 2O, 3O and 4O. Angle ϑ is counted from direction
(0001) towards direction (1000).

in a Lenard-Jones form V (θ) = A/[r − R0(θ)]12 − B/[r −
R0(θ)]6, where r is the distance from the centre of the el-
lipsoid to the centre of the sphere and θ is the angle of the
long molecular axis with the bond vector of the molecules’
centres. The function R0(θ) = 2r0 + ∆r[3 cos2(θ) − 1]/2
involves the average radius r0 = 3.8 Å of the C70 molecule
and the parameter ∆r = 0.41 Å describing its deviation
from the spherical shape [20]. The constants A and B were
set in such a way that the distance 2r0+ 6

√
2A/B = 10.6 Å

was equal to the separation of the nearest neighbouring
molecules C70 in the hcp-2 phase [2]. The line a in Fig-
ure 2 shows the angular dependence of the local poten-
tial of the elongated molecule placed at a site of the hcp
structure and interacting with the neighbouring spheres
in the manner defined above. The section for which Fig-
ure 2 has been made contains the directions (0001) and
(1000) as indicated in Figure 1. There is a minimum of
the steric potential for ϑ = 0, i.e. for the molecule ori-
ented in the (0001) direction. However, the absolute min-
imum occurs at the angle ϑ ≈ 0.35π somewhat greater
than the angle corresponding to the octahedral space
ϑ = arccos(1/

√
3) ≈ 0.30406...× π.

When applied to the fcc geometry the above steric
potential shows the absolute minimum exactly in the di-
rection of the octahedral space, i.e. in the cubic direc-
tion (100). This contradicts the experimental finding [21],
which shows a maximum of the one-particle orientational
distribution in the (110) direction of the fcc phase. The
latter result can be explained by correlated motions of the
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Fig. 2. One-particle orientational potential across section indicated in Figure 1 for purely steric interactions (a), and for
interactions involving orientational polarizability of neighbours (b, c and d).

C70 molecules: whenever the long molecular axis points its
nearest neighbour (this lies exactly in the (110) direction
in the fcc structure) the neighbour tends to align perpen-
dicular to the long axis of the central molecule. The most
plausible energetic reason for such behaviour follows from
the electric charge distribution in the C70 molecule. There
are, namely, electron poor regions close to the poles and
an electron rich equatorial stripe [20]. To model this we
introduced a positive electric charge at each pole of the
central C70 molecule and the corresponding compensat-
ing negative charge at the molecule’s centre. The neigh-
bouring molecules then would attract the poles of the cen-
tral molecule by adopting the appropriate orientation. The
lines b, c and d in Figure 2 show the resulting orientational
potential across the section indicated in Figure 1 for three
increasing values of the end charges. For the end charge
strong enough the absolute minimum occurs at ϑ = 0 and
a single shallow side minimum at ϑ ≈ π/2, i.e. in the
direction (1000).

The simplest pseudospin model based on the above ob-
servations involves the (0001) state 1O and three states 2O,
3O and 4O 120◦ away from one another in the plane 〈0001〉.
Figure 1 shows schematically the orientational states of
the present model. Introduction of additional states re-
lated to the double-well character of the potential near
ϑ ≈ π/2 for some intermediate values of the end charges
(see. Fig. 2) will not change qualitatively the results.

3.2 Symmetry adapted order parameters

Following the idea of Pirc et al. [10,22,23] we intro-
duce four symmetry-adapted combinations of the occu-
pation numbers Ni = 1, 0, where i = 1,...4, and label
them by the irreducible representations of the site point

group 6̄m2 (D3h):

Z1 = N1 − 1
3

(N2 + N3 + N4) (A′
1)

Z2 = N1 + N2 + N3 + N4 (A′
1)

Z3 =
1√
2

(N3 − N4) (E′)

Z4 =
1√
6

(−2N2 + N3 + N4) (E′). (5)

The irreducible representations are given in the parenthe-
ses. In contrast to the cubic site symmetry considered in
references [10,22,23], there are two linearly independent
combinations belonging to the fully symmetrical represen-
tation A′

1 here. The decomposition of the invariant sub-
space of the representation A′

1 into the combinations Z1

and Z2 does not follow from symmetry and is in fact ar-
bitrary. An advantage of the choice made in equation (5)
is that the combination Z2 constantly equals one at any
state of the molecule and in any phase of the crystal. Con-
sequently, the order parameter in the isomorphous phase
transition hcp-2→hcp-1 involves the mean value of the
combination Z1 only.

The general Hamiltonian for the pseudospin-
pseudospin interactions has the following form

Hpseudo = −1
2

∑
i,j

∑
r,s

ZriJ
rs
ij Zsj (6)

with a 4×4 matrix Jrs
ij , r, s = 1,...4 for each pair of sites ij.

The matrices Jrs
ij are symmetrical

Jrs
ij = Jsr

ij = Jrs
ji , (7)

which follows from the central symmetry of the C70

molecules averaged over the rotations about their long
axes.
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In the mean field approximation the Hamiltonian (6)
becomes

HMF = −
∑
i,j

∑
r,s

〈Zri〉Jrs
ij Zsj +

1
2

∑
i,j

∑
r,s

〈Zri〉Jrs
ij 〈Zsj〉 ·

(8)

3.3 Anisotropic quadrupolar interactions, equation
of state and phase equilibrium

When applying this kind of model to the mixed sys-
tem KCN(1−x)Brx the authors of references [10,22,23] as-
sumed totally isotropic pseudospin interactions, i.e. all
the matrices Jrs

ij diagonal with equal diagonal terms:
Jrs

ij = Jijδrs. The same assumption was adopted in the
majority of general theories on quadrupolar glasses [12].
Whereas this assumption might be justified in the case
of the relatively distant CN− ions, it is certainly false for
C70, where the molecules stick together. The simplifica-
tion we adopt here stems from the observation that all
the detected ordered phases of C70 consist of close packed
hexagonal planes with the long molecular axes perpendic-
ular to the planes. This is true for the ordered R3̄m phase
as well as for the hcp-1 phase. Interesting enough, a similar
tendency occurs in the molecular ordering in the smectic
A liquid crystals [24]. We then assume that the mean field
at the site j has the general form

∑
i,r〈Zri〉Jrs

ij ∼ δs1 and
arises only when the neighbouring molecules are in the
state 1O, i.e. when 〈Zri〉 = 〈Z1〉δr1 for each site i. With
equation (7) in mind this is equivalent to the condition

∑
i

Jrs
ij = δr1δs1

∑
i

J11
ij , (9)

which allows one to simplify the mean field Hamiltonian

HMF = −
∑
i,j

〈Z1〉J11
ij Z1j +

1
2

∑
i,j

〈Z1〉J11
ij 〈Z1〉 · (10)

The only relevant interaction parameters are now J11
ij . In

return, any long-range order with the molecules oriented
in the states 2O, 3O and 4O of Figure 1 is precluded. One
easily sees that it is not possible to build a close packed
plane with the molecules oriented in these states in the hcp
structure. The condition (9) is as drastic as the assump-
tion of the isotropic interactions but is better adapted to
C70. A less radical assumption implying a non-zero mean
field for orientations other than 1Omight be more realistic,
but would make the analysis much more complicated.

Taking into account the coupling with the strain and
the full symmetry of the order parameters one arrives at
the following mean-field Hamiltonian

H = −
∑
i,j

〈Z1〉J11
ij Z1j − h

∑
j

Z1j − rε
∑

j

Z1j

+
1
2

∑
j

c0ε
2 +

1
2

∑
i,j

〈Z1〉J11
ij 〈Z1〉 · (11)

(Note the normalization of the elastic constant c0.)

There is a straightforward relation between the sys-
tem defined by the Hamiltonian (11) and the usual two-
state Ising model. This can be seen by adopting the
transformation

Z1 = (2s + 1)/3 (12a)

or

s = (3Z1 − 1)/2. (12b)

Whereas the variable Z1 (Eq. (5)) takes the values 1
and −1/3, the corresponding values of s are 1 and −1.
When written in the variable s the Hamiltonian (11)
becomes

H =
∑

j

(
−H sj − 1

2
r̄ε +

1
2
c0ε

2 +
1
2
J̄〈s〉2

)
, (13)

where the molecular field is

H = 〈s〉J̄ + h̄ + r̄ε, (14)

while the renormalized parameters are

J̄ =
4
9

∑
i

J11
i1 , (15a)

h̄ =
2
3
h +

2
9

∑
i

J11
i1 (15b)

and

r̄ =
2
3
r. (15c)

The constant terms have been dropped in equation (13)
as only defining the absolute scale of energy. A further
transformation

ε = ε̂ +
r̄

2c0
(16)

and

ĥ = h̄ +
r̄2

2c0
(17)

allows one to write the Hamiltonian (Eq. (13)) in a simpler
form

H =
∑

j

(
−H Sj +

1
2
c0ε̂

2 +
1
2
J̄〈s〉2

)
(18)

with

H = 〈s〉J̄ + ĥ + r̄ε̂. (19)

The equilibrium values of the average 〈s〉 and of the
strain ε are obtained by minimization of the free energy

F = −kBT ln Ω, (20)
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where the partition function Ω is

Ω = exp
[(

−1
2
c0ε̂

2 − 1
2
J̄〈s〉2

) /
kBT

]

× [exp(H /kBT ) + 3 exp(−H /kBT )] . (21)

The resulting self-consistent equations of state can be
written in the following form

〈s〉 =
[exp(H /kBT ) − 3 exp(−H /kBT )]
[exp(H /kBT ) + 3 exp(−H /kBT )]

= tanh(H/kBT ) (22a)

ε̂ =
r̂

c̄0
〈s〉, (22b)

where

H = H− kBT ln(3)/2 ≡ H + hs, (23)

while

hs = −kBT ln(3)/2. (24)

Equation (22a) with equations (19, 23) and (22b) is for-
mally equivalent to that for the usual two-state Ising
model in an external field ĥ+hs. However, the field ĥ+hs

is here a result of intermolecular interactions and is al-
lowed by symmetry; no external field is needed. This term
would necessarily vanish for a symmetry-breaking phase
transition. A particularity of the present model is that the
field ĥ + hs depends on temperature due to the ‘entropic’
contribution hs (Eq. (24)). The dependence is a result of
the triple degeneracy of the state s = −1.

Because of the presence of the field-like term ĥ+hs the
phase transition is generally of first order. The phase equi-
librium occurs when the free energy (Eq. (20)) with equa-
tion (22b) inserted into equation (22a) is an even function
of 〈s〉 and has two minima of equal depths. The condition
for the free energy being an even function is

ĥ + hs = 0, (25)

which is equivalent to

T = Teq =
2ĥ

kB ln(3)
; (26)

whereas the condition for the existence of two minima
reads

Teq < Tch = (J̄ + r̄2/c̄0)/kB. (27)

The particular case of T = Teq = Tch describes the critical
point.

Whenever the condition (27) is fulfilled, the tempera-
ture Teq (Eq. (26)) describes the equilibrium coexistence
of phases.

3.4 Molecular field in diluted system

Equation (19) defines the molecular field acting on a given
C70 molecule as a function of the quantity 〈s〉, which is
the expectation value of s at a site occupied by a molecule
C70. Now in the diluted system C70(1−x)C60 only a fraction
(1−x) of sites are occupied by C70 and only these sites are
involved in the creation of the molecular field. Therefore,
the molecular field acting at a molecule depends on the
volume average s̄ = (1 − x)〈s〉 rather than on the site
expectation value 〈s〉:

H = s̄J̄ + ĥ + r̄ε̂. (28)

Inserting equation (28) into equation (22a) and multiply-
ing both sides of the resulting equation by (1 − x) one
obtains a self-consistent equation dependent on s̄ only

s̄ = (1 − x)
[exp(H /kBT ) − 3 exp(−H /kBT )]
[exp(H /kBT ) + 3 exp(−H /kBT )]

= (1 − x)tanh
(H/kBT

)
, (29)

where the relations (23) and (24) have been applied. The
deformation of the sample is also proportional to the vol-
ume average s̄, so that the analogue of equation (22b)
now is

ε̂ =
r̂

c0
〈s̄〉 · (30)

One can easily check that equations (29, 30) are consistent
with the minimum condition of the free energy (Eq. (20))
with the following one-particle partition function

Ω =exp
[(

−1
2
c0ε̂

2 − 1
2
J̄ s̄2

) /
kBT

]

× [exp(H /kBT ) + 3 exp(−H /kBT )](1−x)
. (31)

The critical temperature Tch now becomes

Tch = (1 − x)
(

J̄ +
r̄2

c0

) /
kB. (32)

A noticeable property of the present model is that the
first order of the phase transition results from the field-
like term ĥ + hs in equations (19, 28) and not from a
non-linear coupling of the order parameter with strain as
is required in symmetry breaking phase transition [6].

3.5 Effect of random fields and of random bonds

In addition to the numerical proportionality of the volume
average s̄ = (1−x)〈s〉 discussed above, the presence of ad-
mixtures in a system with orientational degrees of freedom
introduces random fields and random bonds [9,10,22,23].
If the phase transition in the non-diluted system is of sec-
ond order the critical temperature lowers with increasing
amplitude of random fields and with increasing distribu-
tion width of random bonds [11]. The resulting phase is
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Fig. 3. Temperature dependence of orientational order parameter (Eq. (33)) at presence of random bonds and random fields
with distribution width σ.

replica-symmetric [11] provided that the random ampli-
tudes are not too strong. The replica-symmetric state in
the present case is obtained by replacing the self-consistent
equation (29) by the following equation

s̄ =
(1 − x)√

2π

∫ +∞

−∞
dze−z2/2tanh

(
σz + H

kBT

)
, (33)

where σ =
√

qEAT 2
q + T 2

∆, while qEA is the Edwards-
Anderson order parameter [11], Tq is the width of
the random bonds distribution and T∆ is the width
of the random fields distribution (see Ref. [25] for
analogous formula in the case of a first order phase
transition governed by a non-linear coupling with the
strain). Figure 3 shows the order parameter s̄ calcu-
lated with equation (33) for the parameters of the model:
c0 = 7875000, J̄ = 39.0, r̄ = 52500, ĥ = 195 cor-
responding to the pure C70 and for three values of the
total width σ. Although a precise x-dependence of the pa-
rameter σ is not straightforward [12,13] one should expect
it to be an increasing function. Figure 3 shows that the
main effect of the random fields and of random bonds is
a narrowing of the hysteresis with practically no variation
of the coexistence temperature. Now that the experiment
shows a strong decrease in the transition temperature with
increasing x the principal effect of the dilution lies in an
x-dependence of the parameters of the model.

3.6 x-dependence of the model parameters
for C70(1−x)C60x

The transition temperature hcp-2→hcp-1 in the mixed
crystal C70(1−x)C60x drops linearly with the concentra-
tion x of C60 at the rate ∼20 K/%C60 both at cooling and
heating [8]. The temperature of the transition at cooling is
lower from that obtained at heating due to a hysteresis but

the rate is alike in both cases. Therefore, the field ĥ must
depend on x so that ∂Teq/∂x = −2000 K (Eq. (26)). Be-
cause of the presence of the temperature dependent field
hs (Eq. (24)) the field ĥ now decreases with x in con-
trast with the predictions of the simple Landau theory
(see Sect. 2.2 and Ref. [19]).

For x = 0 the model describes the isomorphous phase
transition in the pure hexagonal C70. Since the experi-
mental spontaneous strain is ε̂ ≈ 0.01 in this case we
put r̂(x = 0)/c0 = 0.01 × (2/3) (see Eq. (30)). Fur-
ther, we assume that the hysteresis observed in this phase
transition between 308 K–364 K extends over the whole
range of metastability of both phases. This assumption
is in fact fulfilled for experiments done at an infinitesi-
mally slow temperature variation. As a result we obtain
(Eqs. (26, 27)): Teq(x = 0) = 355 K, Tch(x = 0) = 389 K
and ĥ(x = 0) = 195 K. The equations for the limits of hys-
teresis allow us to calculate the parameters J̄ and r̄2/c0

for x = 0.
The value r̄2/c0(x = 0.088) can be obtained from

Teq = Tch (Eq. (27)) assuming that the concentration
x = 0.088 corresponds to the critical point. It turned out,
when solving numerically equations (29, 30), that a linear
dependence of the parameter r̄ on x produces a narrow-
ing of the hysteresis much stronger than that observed
experimentally [8]. A better fit has been obtained with
a quadratic x-dependence of the quantity r̄/

√
c0. Since

the x-dependence of the “bare” elastic constant c0 is not
known we assume a constant value here. In summary, the
resulting set of the quantities (in kelvins) involved in the
self-consistent equations (29, 30) are:

c0 = 7875000

J̄ = 39.0

r̄ = 52500− 2460937.5x2

ĥ = 195 − 1098.56x. (34)
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Fig. 4. Temperature dependence of orientational order parameter s̄ evaluated from equations (29, 30) with parameters of
equations (34).
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model (Eqs. (29, 30) and (34)). Experimental points extracted from reference [8] are reported.

Figure 4 shows the temperature dependence of the ori-
entational order parameter s̄ obtained numerically from
equations (29, 30) with the values from equation (34) for
the concentrations x which were used in the dilatometric
study [8]. An interesting and unexpected result is that the
metastable phase with negative s̄ reappears below 275 K
in addition to the stable ordered phase with s̄ ≈ 1 for
x = 0. The metastable phase is represented in Figure 4 by
the lowest branch of the continuous curve. For x = 0.035
and x = 0.06 the metastable phase subsists in the whole
temperature range as a smooth continuation of the high-
temperature disordered phase. In Figure 5 the lower and
upper limits of the hysteresis Td and Tu as well as the
phase equilibrium temperature Teq are shown as functions
of the concentration x. In the case where the metastable
phase subsists in the whole temperature range the lower
limit of hysteresis is defined by the minimum of the free
energy barrier (Eq. (20)) separating the metastable phase

from the stable one. This explains the cusps in the curve
Td(x) in Figure 5.

Figure 6 represents the behaviour of the spontaneous
strain for the concentrations x from Figure 4. The limits of
hysteresis are also marked. Figure 7 gives the same results
normalized to ε̂(T = 300 K) as it was done in the dilato-
metric study [8]. The spontaneous strain in the disordered
phase drops with decreasing temperature in the vicinity
of the phase transition. This behaviour has been observed
experimentally. Moreover, it explains in a natural way the
initial rise and the subsequent decrease in the jump of the
spontaneous strain with increasing x.

The predictions for the temperature-dependence of the
effective elastic constant (see Ref. [6] for definition) useful
for the future thermoelastic study is shown in Figure 8.
An interesting feature of Figure 8 is that the softening
of the elastic constant does not point zero whenever the
metastable phase exists in the whole temperature range.
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4 Discussion

The anisotropic pseudospin model presented in Section 3
relates the first order phase transition hcp-2→hcp-1 in
C70(1−x)C60x to the ‘entropic’ field hs = −kBT ln(3)/2
due to the higher multiplicity of the state with s ≈ −1 in
the Ising Hamiltonian of equation (13). The mechanism of
this phase transition is, therefore, substantially different
from that implied by a strong enough coupling of the ori-
entational order parameter with strain [6,7]. The increase
in the amount x of the C60 molecules apparently drives
the system C70(1−x)C60x towards the critical point. Typi-
cal Landau theory would then require a strengthening of
the local quadrupolar field with the dilution x (see Eq. (4)
and Ref. [19]). However, an admixture of more spherical
C60 should rather weaken this field. The field ĥ resulting
from the pseudospin model does really weaken with x (see
Eq. (34)) as a consequence of the temperature-dependent
field hs (Eq. (24)).

Two experimental observations, which could have been
thought of as artefacts find a clear explanation in the
present model. Firstly, a dip in the temperature depen-
dence of the strain near the phase transition [8] is easily
visible for x = 0.035 and x = 0.06 in Figure 6. Secondly,
the x-dependence of the jump of the strain at the phase
transition showing an initial increase followed by a de-
crease with increasing x can be identified in Figure 7.

Doubts can be raised, however, about the behaviour of
the system for the concentrations x close to x ≈ 0.08. The
assumption of the critical point at x ≈ 0.088 implies that
both the width of the hysteresis and the jump of the strain
should tend to zero by approaching this point. The param-
eters of equations (34) allow one to keep the width of the
hysteresis fairly large down to quite close to the critical
point in accordance with the experimental observations.
The corresponding jump of the strain rests, however, also
large in this range of concentration x, whereas it shows a
significant decrease in experiment (e.g. compare the jump
of strain at x = 0.06, Figure 7, and the corresponding
curve of Ref. [8]). The existence of the metastable phase
with negative order parameter s̄ suggests a kinetic origin
of this discrepancy. Namely, the prediction exhibited in
Figures 4–8 concern an idealized experiment with the cool-
ing rate tending to zero, whereas the experimental cool-
ing rate always differs from zero. Therefore, an amount
of the sample rests in the initial disordered metastable
phase. This amount should increase with increasing cool-
ing rate and with decreasing transition temperature. The
actual critical point then would follow from the limit of
the infinitely slow cooling. A series of experiments with
different cooling rates are feasible with the DMA appara-
tus and will be done in future. At the present stage we can
estimate the fraction γ of the disordered phase subsisting
below the phase transition by comparison of the theoreti-
cal “quasistatic” jumps of the strain of Figure 7 with the
experimental ones. Thus, γ ≈ 0, at x = 0 and x = 0.35,
γ ≈ 43% at x = 0.05 and γ ≈ 83%, at x = 0.06. It would
be interesting to compare these estimates with spectro-
scopic observations of molecular motions (see Ref. [21] for
an example of similar studies in the fcc structure).

All the above considerations describe the orienta-
tional ordering of the C70 molecules in the mixed system
C70(1−x)C60x as an interplay between the ordered phase
with s ≈ 1 and the disordered phase with s ≈ −1 where
the pseudospin states 2O, 3O and 4O (Fig. 1) are occu-
pied with equal probability. We have shown that this ef-
fect dominates over the influence of the random fields and
random bonds, which only accelerates the approach to the
critical point.

An intriguing question is the physical reason for a
tremendously strong dependence of the model parameters
on the concentration x (see Eq. (34)). The mechanism of
this dependence seems to be similar to that observed in
granular media, where the introduction of a steric impu-
rity creates a system of defects extending to a very long
distance [26].

This work has been done within Austrian-Polish ÖAD-WTZ
project Nr. 18/2000. Support from the FWF project P12226-
PHY is gratefully acknowledged. We thank Prof. M. Massalska-
Arodź for her remarks on the relation with granular media.

Appendix A

There are two independent normal strains and two corre-
sponding elastic parameters of symmetry A′

1 in the hexag-
onal media. The elastic parameters are

λ± =
1
2

{
(c11 + c12 + c33)

±
√

(c11 + c12 + c33)2 − 4 [(c11 + c12)c33 − 2c2
13]

}
,

(A.1)

whereas the normal strain have a general form
(ε11, ε22, ε33) = (α, α, β) with

α±
β±

=
(λ± − c33)

2c13
· (A.2)

The soft elastic parameter at the critical point of the iso-
morphous phase transition is the lower of the values of
equation (A.1).
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